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The equivalent elastic crack procedure as applied

to internally pressurised crack problems
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Analysis of a specific idealised model demonstrates the limitations of the equivalent elastic
crack procedure when it is applied to internally pressurised crack problems. C© 1999
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1. Introduction
The cohesive zone description has been extensively
used to study the failure of quasi-brittle materials, such
as concrete, rock, ice, tough ceramics and some com-
posites. With this description, when it is used for two-
dimensional crack situations, an infinitesimally thin
cohesive zone forms at a crack tip, the zone being char-
acterised by a material specific relation between the
tensile stress (p) across the zone, and the relative dis-
placement (v) between the zone faces.p(v) decreases
asv increases, the cohesive zone thus exhibiting soften-
ing characteristics. The maximum stress that the zone
is able to withstand ispc and the maximum is associ-
ated with the leading edge of the cohesive zone. The
zone is said to be fully developed when the stressp
falls to zero at the trailing edge of the zone, a situation
that is assumed to be attained when the displacement
v attains a critical valuevc. For a positive loading sit-
uation where the crack tip stress intensity increases as
a crack extends, for a fixed applied loading, and with
a generalp-v cohesive zone softening behaviour, the
maximum stress, and thereby failure, is attained prior
to the cohesive zone’s full development.

The cohesive zone description is frequently used in
conjunction with the effective elastic crack procedure.
With this procedure, it is recognised that the far-field
behaviour for a cohesive zone model coincides with the
behaviour for the corresponding effective elastic crack
model, when the cohesive zone size is small compared
with the geometrical dimensions of the configuration
under consideration; the effective elastic crack then has
its tip somewhere within the actual cohesive zone. The
J contour integral is a far-field parameter, though with
the special property that it is path independent for any
path completely surrounding a cohesive zone, and this
property can be exploited [1] so as to give the first order
deviation from the LEFM criterion for crack extension.
This deviation relation, which is strictly valid only
when the cohesive zone size is small compared with
a configuration’s characteristic dimensions, has been
used more generally by Bazant and co-workers [2]
as an approximation for situations where the zone
size is not necessarily small compared with these
dimensions.

It is against this general background that the present
paper examines the behaviour of a crack which is sub-
jected to an internal pressure, a state of affairs that is
relevant to the problem of hydraulic fracturing of rock.
In such a situation, evaluation of theJ integral around
a path that spreads beyond the cohesive zone will in-
clude a contribution from the pressurized crack surface,
and theJ integral will not then be path independent.
Consequently, it would appear unlikely that the equiva-
lent elastic crack procedure can be applied to internally
pressurised crack problems; this paper analyses a spe-
cific idealised model whose results do indeed demon-
strate the limitation of the procedure when it is applied
to such situations.

2. General theoretical background
Consider a solid in which there is a crack of initial depth
a0, D is a characteristic geometrical dimension andσN
is a nominal stress. The stress intensity defined with
regard to a crack of depth a can be expressed in the
general form

KI = σN

√
DS(a/D) (1)

whereS(a/D) is a geometrical shape factor. Following
Planas and Elices [1] and using the equivalent elastic
crack procedure, Rice’sJ integral [3], which is a far-
field parameter, can be written in the form

J = 1

E0
[KI (a0+1aE)]2 (2)

where E0= E/(1− ν2) for plane strain deformation,
with E being Young’s modulus andν being Poisson’s
ratio, while1aE is the elastically equivalent size of
cohesive zone, which need not necessarily be fully de-
veloped. A two term expansion of relation (2) gives

J = K 2
IN

E0

[
1+ 2S′0

S0
· 1aE

D

]
(3)

whereS0 and S′0= dS/da are defined with respect to
a= a0; KIN is the stress intensity defined with regard
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to the initial crack tip, i.e. it is defined by relation (1)
but witha= a0. Now J , as given by relation (3), can be
equated with the areaWF under thep-v softening curve
up to a value ofv that is equal to the displacementvT at
the trailing edge of the cohesive zone, i.e. at the initial
crack tip. Thus,

K 2
IN

E0

[
1+ 2S′0

S0
· 1aE

D

]
=WF=

∫ vT

0
p(v) dv (4)

With positive geometries, i.e. those for which the shape
factor S(a/D) increases with crack extension, general
arguments have been used [1] to show that, although
the maximum stress is attained before the zone is fully
developed, the maximum stress is given, for the large
D situation, by relation (4), but with1aE≡ cf and
wF≡GF. cf is the elastically equivalent size of the fully
developed cohesive zone associated with the extreme
case of a semi-infinite crack in a remotely loaded in-
finite solid andGF is the specific fracture energy ap-
propriate for thep-v softening law and is given by the
expression

GF=
∫ vc

0
p(v) dv (5)

Consequently, the resulting expression giving the max-
imum stress is

E0GF

K 2
IN,MAX

= K 2
IC

K 2
IN,MAX

= 1+ 2S′0
S0
· cf

D
(6)

with KIC= [E0GF]1/2 being the fracture toughness
of the material. Expression (6), which reduces to
the LEFM criterion KIN,MAX = KIC for the limiting
case wherecf/D → 0, is valid for smallcf/D, i.e. for
large structural dimensions. However, as mentioned in
Section 1, expression (6) has been used by Bazant and
co-workers [2] as an approximate representation of the
true state of affairs for a wide range ofcf/D values.

In the next section, we explore the viability of the
equivalent elastic crack procedure, as manifested by
relation (6), with regard to internally pressurised crack
problems.

3. Analysis of a specific idealised model
To simplify the considerations, it is assumed that the
stress within the cohesive zone remains constant at the
value pc until the displacementv attains the critical
valuevc when the stress is assumed to fall abruptly from
pc to zero. This is the classic Dugdale-Bilby-Cottrell-
Swinden (DBCS) representation [4, 5], and with this
specific behaviour, the attainment of maximum stress
is associated with the full development of the cohesive
zone.

The particular model that will be analysed in this
section is that of a two-dimensional Mode I crack of
length 2a0 in an infinite solid that is subjected to an ap-
plied tensile stressσA while the crack is also subjected
to an internal pressureσI ; there are cohesive zones at
the crack tip, and the tensile stress within these zones

is pc. Now for the case whereσI = 0, the applied ten-
sile stressσA required to cause crack extension, i.e. to
induce a displacementvc at a crack tip, is given by the
expression [5]

σA

pc
= 2

π
sec−1 exp

{
πE0vc

8pca0

}
(7)

With regard to this relation, it should be noted thatσA
and (σA − pc) are the stresses acting upon the dislo-
cations that represent the relative displacement across
respectively the crackfaces and the cohesive zones. For
the case where we have a combination of external stress
σA and internal pressureσI , the corresponding stresses
are (σA + σI ) and (σA − pc). Thus we can obtain the
expression giving theσA/σI combination of stresses re-
quired to cause crack extension by replacingσA andpc
in relation (7) by respectively (σA + σI ) and (pc+ σI ),
i.e.

(σA + σI )

(pc+ σI )
= 2

π
sec−1 exp

{
πE0vc

8(pc+ σI )a0

}
(8)

Now with the DBCS representation, the specific frac-
ture energyGF= pcvc whereuponKIC= [E0 pcvc]1/2

and thus withθ =πK 2
IC/8p2

ca0, x = (σA + σI )/pc and
λ= σI/(σI + σA) it being assumed that we have pro-
portional loading, then relation (8) can be written in
the form

cos

{
πx

2(1+ λx)

}
= exp

{ −θ
(1+ λx)

}
(9)

Since we are concerned with the situation whereθ and
x are both small, and noting thatλ ranges between 0
and 1, expansion of both sides of relation (9) to the first
three terms gives

1− π2x2

8(1+ λx)2
+ π4x4

384(1+ λx)4

= 1− θ

(1+ λx)
+ θ2

2(1+ λx)2
(10)

whereupon

x2= 8θ (1+ λx)

π2
+ π2x4

48(1+ λx)2
− 4θ2

π2
(11)

Relation (11) shows thatθ can be expressed in the form

8θ

π2
= x2− λx3+

(
λ2+ π

2

24

)
x4 (12)

to the first three terms in increasing powers ofx , where-
upon we can expressx in terms ofθ as follows:

x = 81/2θ1/2

π
+ 4λθ

π2
+ 81/2

2π3

[
2λ2− π

2

3

]
θ3/2 (13)

2520



Figure 1 The cohesive zone model analysed in Section 3.

to the first three terms in increasing powers ofθ . It then
follows that

1

x2
= π

2

8θ

[
1− λ81/2θ1/2

π
+ θ

(
1

3
+ 5λ2

2π2

)]
(14)

again to the first three terms in increasing powers
of θ . Thus with x = (σA + σI )/pc, θ =πK 2

IC/8p2
ca0

and KIN,MAX = (σA + σI )(πa0)1/2, this relation can be
rewritten in the form

K 2
IC

K 2
IN,MAX

= 1− λ

π1/2
· KIC

pca
1/2
0

+ πK 2
IC

24p2
ca0

(
1+ 15λ2

2π2

)
(15)

with λ= σI/(σI + σA). On the other hand, the crack
extension condition as given by the equivalent elas-
tic crack procedure [see relation (6) with the function
S≡ (πa/D)1/2)] is

K 2
IC

K 2
IN,MAX

= 1+ cf

a0
= 1+ πK 2

IC

24p2
ca0

(16)

sincecf = πK 2
IC/24p2

c with the DBCS cohesive zone
representation [6].

Comparison of relations (15) and (16) shows that
when there is no internal pressure, i.e.σI = 0 orλ= 0,
then the equivalent elastic crack procedure gives, not
surprisingly, the same crack extension criterion as does
an exact analysis based on the DBCS representation.
However, if the crack is internally pressurised, i.e.

σI 6= 0 or λ 6= 0 , then the procedure clearly does
not give the correct crack extension condition. Indeed
the first order deviation from the LEFM criterion in-
volves a termKIC/pca

1/2
0 (see relation (15)) which is

not the case when there is no internal pressure.

4. Concluding comments
The analysis of the specific idealised DBCS cohesive
zone model in the preceding section has confirmed the
supposition in the Introduction that the equivalent elas-
tic crack procedure cannot be used for internally pres-
surised crack problems. The reason for this is that the
procedure depends on the principle that the far-field be-
haviour for a cohesive zone model coincides with the
behaviour for the corresponding effective elastic crack
model, when the cohesive zone size is small compared
with the geometrical dimensions of the configuration
under consideration. TheJ contour integral is a far-
field parameter, though with the special property that it
is path independent for any path completely surround-
ing a cohesive zone, and this property can be exploited
so as to give the deviation from the LEFM crack ex-
tension condition. This procedure works satisfactorily
as regards an externally applied stress. However, as
demonstrated in the preceding section, it does not work
with an internally pressurised crack problem. In such a
situation, evaluation of theJ integral around a path that
spreads beyond the cohesive zone will include a con-
tribution from the pressurized crack surface, and theJ
integral will not then be path independent.
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