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The equivalent elastic crack procedure as applied
to internally pressurised crack problems
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Analysis of a specific idealised model demonstrates the limitations of the equivalent elastic
crack procedure when it is applied to internally pressurised crack problems. © 7999
Kluwer Academic Publishers

1. Introduction Itis against this general background that the present
The cohesive zone description has been extensivelgaper examines the behaviour of a crack which is sub-
used to study the failure of quasi-brittle materials, suctjected to an internal pressure, a state of affairs that is
as concrete, rock, ice, tough ceramics and some contelevant to the problem of hydraulic fracturing of rock.
posites. With this description, when it is used for two- In such a situation, evaluation of tlleintegral around
dimensional crack situations, an infinitesimally thin a path that spreads beyond the cohesive zone will in-
cohesive zone forms at a crack tip, the zone being chaclude a contribution from the pressurized crack surface,
acterised by a material specific relation between thend theJ integral will not then be path independent.
tensile stressy) across the zone, and the relative dis-Consequently, it would appear unlikely that the equiva-
placement ) between the zone facep(v) decreases lent elastic crack procedure can be applied to internally
asv increases, the cohesive zone thus exhibiting softernpressurised crack problems; this paper analyses a spe-
ing characteristics. The maximum stress that the zoneific idealised model whose results do indeed demon-
is able to withstand i, and the maximum is associ- strate the limitation of the procedure when it is applied
ated with the leading edge of the cohesive zone. Th¢o such situations.

zone is said to be fully developed when the strpss

falls to zero at the trailing edge of the zone, a situation

that is assumed to be attained when the displacement General theoretical background

v attains a critical value.. For a positive loading sit-  consider a solid in which there is a crack of initial depth
uation Whel’e the CraCk t|p stress IntenSIty INcreases %ﬁ)’ D |S a Charactens“c geometncal dimension a-Nd
a crack extends, for a fixed applied loading, and withis 3 nominal stress. The stress intensity defined with

a generalp-v cohesive zone softening behaviour, theregard to a crack of depth a can be expressed in the
maximum stress, and thereby failure, is attained priogeneral form

to the cohesive zone’s full development.

The cohesive zone description is frequently used in K| :gNJBS(a/ D) (1)
conjunction with the effective elastic crack procedure.
With this procedure, it is recognised that the far-fieldwhereS(a/ D) is a geometrical shape factor. Following
behaviour for a cohesive zone model coincides with thd’lanas and Elices [1] and using the equivalent elastic
behaviour for the corresponding effective elastic crackcrack procedure, Rice’$ integral [3], which is a far-
model, when the cohesive zone size is small comparetield parameter, can be written in the form
with the geometrical dimensions of the configuration 1
under consideration; the effective elastic crack then has J="—[K(ag+ AaE)]2 (2)
its tip somewhere within the actual cohesive zone. The Eo

J contour integral is a far-field parameter, though WithWhere Eo= E/(1—1?) for plane strain deformation
the special property that it is path independent for any i £ being Young’s modulus and being Poisson’s’

path completely surrounding a cohesive zone, and th'rsatio while Aag is the elastically equivalent size of

property can be exploited [1] so as to give the first order : . : )
deviation from the LEFM criterion for crack extension. cohesive zone, which need not necessarily be fully de

This deviation relation, which is strictly valid only veloped. A two term expansion of relation (2) gives

when the cohesive zone size is small compared with 5

a configuration’s characteristic dimensions, has been J= ﬂ[l 2% Aﬁ} (3)
used more generally by Bazant and co-workers [2] Eo S D

as an approximation for situations where the zone

size is not necessarily small compared with thesavhere & and §)=dS/da are defined with respect to
dimensions. a=ap; K|\ is the stress intensity defined with regard
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to the initial crack tip, i.e. it is defined by relation (1) is p.. Now for the case where =0, the applied ten-
but witha =ag. Now J, as given by relation (3), can be sile stressra required to cause crack extension, i.e. to
equated with the aré&f under thep-v softening curve  induce a displacement at a crack tip, is given by the
up to avalue ob that is equal to the displacemantat  expression [5]

the trailing edge of the cohesive zone, i.e. at the initial

crack tip. Thus, 2 E
U_A=—seclexp{n Ovc} (7)
/4

Pec 8Pcao
KIZN 2% Aag T
o [1+—S) " ]—_ We __./o p(v)dv (4)

With regard to this relation, it should be noted that
oa — pc) are the stresses acting upon the dislo-

) " L . and
With positive geometries, i.e. those for which the Shapecations that represent the relative displacement across

factor a/D) increases with crack extension, general oo tively the crackfaces and the cohesive zones. For
arguments have been used[1] to show that, althoug

h \ ¢ i< attained before th i Ul e case where we have a combination of external stress
€ maximum SIress IS attained belore the zone IS fu %A and internal pressukg, the corresponding stresses
developed, the maximum stress is given, for the Iarggjlre ta+01) and G — po). Thus we can obtain the
- - - - _ C .
D 5|tuat|on_, by relatlpn (4), b.Ut W'tm‘?‘Ech and expression giving thea /o, combination of stresses re-
wr = Gr. ¢t isthe elastically equivalent size of the fully  jicad to cause crack extension by replacipgand pe

developed cohesive zone associated with the extrem . .
A X ; relation (7) by respectivelyofs and ,
case of a semi-infinite crack in a remotely loaded in- o (7) by resp +o1) e+ 1)

finite solid andGg is the specific fracture energy ap-
propriate for thep-v softening law and is given by the

. (oa+0a) 2 1 { 7 Eque }
expression — = —seC exp ——— 8
(pcto) = P 8(pe +o1)a0 &
Gr= /o p(v) dv () Now with the DBCS representation, the specific frac-

ture energyGr = peve whereuponKc = [Eqpeve] Y2
Consequently, the resulting expression giving the maxand thus withp = K& /8pZao, x = (oa +01)/pc and
imum stress is L =o01/(o1 +0oa) it being assumed that we have pro-

portional loading, then relation (8) can be written in

2 the form
K'i"GF - KzK'C _145. % (6)
IN,MAX IN,MAX S) -0
cos{ — } = exp{ e } (9)
with K,c =[EoGr]¥2 being the fracture toughness 2(1+2x) (1+4x)

of the material. Expression (6), which reduces to . o
the LEFM criterion Kiy wax = Kic for the limiting ~ Since we are concerned with the situation wheesd

case where;/D — 0, is valid for smalic;/D, i.e. for ~ X are both small, and noting thatranges between 0
large structural dimensions. However, as mentioned i@nd 1, expansion of both sides of relation (9) to the first
Section 1, expression (6) has been used by Bazant arifiree terms gives

co-workers [2] as an approximate representation of the

true state of affairs for a wide range @f D values. 1 72x2 x4
In the next section, we explore the viability of the " 8(1+ Ax)2 T 384(1+ Ax)*
equivalent elastic crack procedure, as manifested by 5
relation (6), with regard to internally pressurised crack —1_ 6 T 6 (10)
problems. (1+Ax)  2(1+ax)?
whereupon

3. Analysis of a specific idealised model

To simplify the considerations, it is assumed that the 89(1 4 Ax) 72x4 462
stress within the cohesive zone remains constant at the 2= 5 55— —%
value p. until the displacement attains the critical T 48(1+ax)2 m
valuev: when the stressis assumed to fall abruptly from ] .
pe to zero. This is the classic Dugdale-Bilby-Cottrell- Relation (11) shows thatcan be expressed in the form
Swinden (DBCS) representation [4, 5], and with this

specific behaviour, the attainment of maximum stress 8 3 » T\ 4

is associated with the full development of the cohesive =X A (A + 2_4>X (12)
zone.

The particular model that will be analysed in this
section is that of a two-dimensional Mode | crack of
length 2 in an infinite solid that is subjected to an ap-
plied tensile stressa while the crack is also subjected 12412 12 5
to an internal pressure; there are cohesive zones at , _ 870 46 n 87/° [ZAZ B ”_}93/2 (13)
the crack tip, and the tensile stress within these zones T 72 273 3

(11)

to the first three terms in increasing powerg pfvhere-
upon we can expressin terms ofo as follows:
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o1 # 0 orix # 0, then the procedure clearly does
not give the correct crack extension condition. Indeed
the first order deviation from the LEFM criterion in-
volves a terrrK|C/pCa(1)/2 (see relation (15)) which is
not the case when there is no internal pressure.

e D U 4. Concluding comments
The analysis of the specific idealised DBCS cohesive

b
)

< > zone model in the preceding section has confirmed the
2 Go supposition in the Introduction that the equivalent elas-
tic crack procedure cannot be used for internally pres-
surised crack problems. The reason for this is that the
l \l, procedure depends on the principle that the far-field be-
o haviour for a cohesive zone model coincides with the
A oF}

behaviour for the corresponding effective elastic crack
model, when the cohesive zone size is small compared
with the geometrical dimensions of the configuration
under consideration. Th@ contour integral is a far-
to the first three terms in increasing powergoft then  field parameter, though with the special property that it
follows that is path independent for any path completely surround-
ing a cohesive zone, and this property can be exploited
1 _=? 1 A8Y/291/2 4o }Jr 512 (14) SO as to give the deviation from the LEFM crack ex-
x2 86 T 3 272 tension condition. This procedure works satisfactorily
as regards an externally applied stress. However, as
again to the first three terms in increasing powersdemonstrated in the preceding section, it does not work
of 6. Thus withx=(oa + 01)/pc, @ =7KZ/8p2ap  with an internally pressurised crack problem. In such a
and Ky max = (oa +01)(mag)Y/?, this relation can be situation, evaluation of thé integral around a path that

Figure 1 The cohesive zone model analysed in Section 3.

rewritten in the form spreads beyond the cohesive zone will include a con-
tribution from the pressurized crack surface, andihe
KZ 4+ Kec K& 1512 integral will not then be path independent.
KiR.max w2 pcaé/z 24pzag 22
15
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